资源类型

期刊论文 750

会议视频 21

年份

2023 76

2022 67

2021 70

2020 56

2019 41

2018 50

2017 53

2016 31

2015 25

2014 29

2013 25

2012 17

2011 26

2010 30

2009 31

2008 43

2007 39

2006 13

2005 7

2004 4

展开 ︾

关键词

城镇建设 4

绿色化工 4

碳中和 3

人工智能 2

催化剂 2

催化裂化 2

催化裂解 2

元胞自动机模型 2

固体氧化物燃料电池 2

复合材料 2

性能化 2

效果评估 2

目标识别 2

2022全球工程前沿 1

Tetrasphaera 1

AD9954 1

Al@AP/PVDF纳米复合材料 1

CAE 1

CAN总线 1

展开 ︾

检索范围:

排序: 展示方式:

Preparation and catalytic performance of La0.8Sr0.2CoO3 supported on the mullite fiber ceramic

ZENG Lingke, LIU Yanchun, LIU Ping′an, WANG Hui, SHUI Anze, DUAN Bilin

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 372-376 doi: 10.1007/s11705-007-0067-8

摘要: The perovskite-type LaSrCoO supported on the mullite fiber porous ceramics was prepared by means of the impregnating method, and was then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD); thus we can come to the conclusion that the perovskite-type composite oxidant can disperse on the surface of mullite fiber ceramics. The catalytic activity of the LaSrCoO for NO and CO was evaluated. The effect of the doped 0.1 wt-% PdCl on the catalytic activity of the perovskite-type LaSrCoO was also discussed. The results show that the conversion rates of NO and CO respectively reaches 74.5% and 99% at 601°C without doped Pd, and both reach 100% at 350°C with a little doped Pd.

关键词: porous     conversion     catalytic activity     electron microscopy     perovskite-type LaSrCoO    

Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane

Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 780-789 doi: 10.1007/s11705-018-1733-8

摘要: Hierarchical ZSM-5 zeolite aggregates with different sizes of nanocrystals were synthesized using different amounts of the mesoporogen 3-aminopropyltriethoxysilane. The effect of the crystal size on the catalytic cracking of -heptane was investigated and the Thiele modulus and effectiveness factor were used to determine the reaction rate-limiting step. The crystal size affected the textual properties of the catalysts but not the acidic properties of the catalysts. The reaction rate was first order with respect to the -heptane concentration. Cracking over hierarchical zeolites with nanocrystal sizes larger than about 50 nm took place under transition-limiting conditions, whereas the reaction over hierarchical zeolites with nanocrystal sizes of 15 or 30 nm proceeded under reaction control conditions. Hierarchical ZSM-5 zeolite aggregates with smaller nanocrystals had better selectivity for light olefins which can be ascribed to the shorter diffusion path lengths and lower diffusion resistance in these catalysts. Furthermore, these catalysts had lower coking levels which can be attributed to the substantial number of mesopores which prevent the formation of coke precursors.

关键词: hierarchical ZSM-5     crystal size     catalytic cracking     Thiele modulus     effectiveness factor    

Effect of alkyl nitrite decomposition on catalytic performance of CO coupling reaction over supported

Zhenhua LI, Weihan WANG, Dongxue YIN, Jing LV, Xinbin MA

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 410-414 doi: 10.1007/s11705-012-1213-5

摘要: The syntheses of dimethyl oxalate (DMO) and diethyl oxalate (DEO) by CO coupling reaction in gaseous phase were investigated in a fixed bed reactor over Pd-Fe/Al O catalyst. The catalytic performance was characterized by CO conversion, space-time yield (STY) and selectivity of DMO (or DEO). The results showed that over Pd-Fe/Al O catalyst, the STY of DMO was higher than that of DEO under the same reaction conditions. The optimum reaction temperatures for synthesizing DMO and DEO were 403 K and 393 K, respectively, at the molar ratio 1 ∶ 1 of alkyl nitrite to CO. The difference in synthesizing DMO and DEO on the same catalyst was attributed to the decomposition performances of methyl nitrite (MN) and ethyl nitrite (EN), as density functional theory (DFT) calculation showed that EN decomposed more easily than MN.

关键词: palladium     CO coupling     dialkyl oxalate     alkyl nitrite     decomposition    

Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for

Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 643-653 doi: 10.1007/s11705-020-1972-3

摘要: An encapsulation-structured Fe O @meso-ZSM-5 (Fe@MZ5) was fabricated by confining Fe O nanoparticles (ca. 4 nm) within the ordered mesopores of hierarchical ZSM-5 zeolite (meso-ZSM-5), with ferric oleate and amphiphilic organosilane as the iron source and meso-porogen, respectively. For comparison, catalysts with Fe O (ca. 12 nm) encapsulated in intra-crystal holes of meso-ZSM-5 and with MCM-41 or ZSM-5 phase as the shell were also prepared via sequential desilication and recrystallization at different pH values and temperatures. Catalytic phenol hydroxylation performance of the as-prepared catalysts using H O as oxidant was compared. Among the encapsulation-structured catalysts, Fe@MZ5 showed the highest phenol conversion and hydroquinone selectivity, which were enhanced by two times compared to the Fe-oxide impregnated ZSM-5 (Fe/Z5). Moreover, the Fe-leaching amount of Fe@MZ5 was only 3% of that for Fe/Z5. The influence of reaction parameters, reusability, and ·OH scavenging ability of the catalysts were also investigated. Based on the above results, the structure-performance relationship of these new catalysts was preliminarily described.

关键词: phenol hydroxylation     encapsulation structure     structure-performance relationship     meso-ZSM-5     ferric oxide    

A study on the catalytic performance of Pd/γ-Al

Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 452-456 doi: 10.1007/s11705-010-0522-9

摘要: A series of Pd/γ-Al O hybrid catalysts were prepared by impregnation and subsequent calcination under microwave irradiation. The catalysts were used for direct synthesis of dimethylether (DME) from syngas. The results show that calcination under microwave irradiation improved both the activity and selectivity of the catalysts for DME synthesis. The optimum power of the microwave was determined to be 420 W. Under such optimum conditions, CO conversion, DME selectivity and time space yield of DME were 60.1%, 67.0%, and 21.5 mmol·mL ·h , respectively. Based on various characterizations such as nitrogen physisorption, X-ray diffraction, CO-temperature-programmed desorption, and Fourier transform infrared spectral analysis, the promotional effect of the microwave irradiation on the catalytic property was mainly attributed to both the higher dispersion of Pd and the significant increase in the adsorption on the CO-bridge of Pd. Microwave irradiation with very high power led to the increase in CO-bridge adsorption and thereby decreased the catalytic activity, whereas the coverage by metallic Pd of the active sites on acidic γ-Al O significantly occurred under microwave irradiation with very low power, resulting in a decrease in the selectivity to DME.

关键词: Pd/γ-Al2O3     direct synthesis     dimethyl ether     calcination under microwave irradiation    

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1623-1648 doi: 10.1007/s11705-023-2328-6

摘要: Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed.

关键词: carbon materials     dehydrogenation     active sites     mechanism     catalytic performance     support    

Catalytic ozonation performance and surface property of supported Fe

Zhendong YANG, Aihua LV, Yulun NIE, Chun HU

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 451-456 doi: 10.1007/s11783-013-0509-0

摘要: Fe O was supported on mesoporous Al O or SiO (50 wt.%) using an incipient wetness impregnation method, and Fe O /Al O exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and -chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe O on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO , more Lewis acid sites existed on the surface of Al O , resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe O /Al O exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.

关键词: heterogeneous catalytic ozonation     iron oxides     supports     surface Lewis acid sites    

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 365-381 doi: 10.1007/s11783-013-0520-5

摘要: In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl and modified by H PO . Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbon-ceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m ·g ). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100°C–250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.

关键词: Pd/carbon-CeO2     Pd/carbon-zeolite     pine cone     ZnCl2     catalytic oxidation     xylene    

The preparation, characterization, and catalytic performance of porous fibrous LaFeO

Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 967-975 doi: 10.1007/s11705-020-1922-0

摘要: LaFeO perovskite with a porous fibrous structure was successfully synthesized using a sunflower seed shell as a template. To investigate the effects of this template, a sample was prepared without a template via the same procedure. Through various characterization techniques, such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, N adsorption-desorption analysis, X-ray photoelectron spectroscopy, oxygen temperature programed desorption, and hydrogen temperature programed reduction, the physiochemical properties of the samples were investigated. The results showed that the sample made with a template had a larger surface area and a larger amount of adsorbed oxygen, which further illustrated that the sunflower seed shell template had a significant impact on the physiochemical properties of the samples. Furthermore, we explored the catalytic activity for nitric oxide (NO) oxidation, and studied the factors affecting it, which highlighted its potential application in automobile exhausts.

关键词: NO oxidation     porous fibrous LaFeO3     sunflower seed shell    

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 149-155 doi: 10.1007/s11705-014-1409-y

摘要: Titanium silicalite-1 (TS-1) has been hydrothermally synthesized with tetrapropylammonium hydroxide (TPAOH) as the template in the presence of various amounts of Na , characterized by inductively coupled plasma, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and ultro-violet-visible spectroscopy and studied in cyclohexanone ammoximation. The characterization results show that with the increase of Na concentration in the synthesis, both the crystal sizes of TS-1and extra framework Ti increase but framework Ti decreases. The addition of Na below 3 mol-% of TPAOH in the synthesis does not influence the catalytic properties with above 98% conversion of cyclohexanone and 99.5% selectivity to cyclohexanone oxime. However, at the concentrations of Na ≥3 mol-% of TPAOH in the synthesis, the catalysts are deactivated faster with the increase of Na addition, which can be attributed to more high molecular weight byproducts deposited in the large TS-1 particles and the loss of the frame-work titanium. The results of this work are of great importance for the industry.

关键词: extra framework Ti     cyclohexanone ammoximation     titanium silicalite-1     sodium ion     crystal size    

Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance

Yan LI,Zhehao WEI,Yong WANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 133-140 doi: 10.1007/s11705-014-1422-1

摘要: A Ni/MgO catalyst was prepared via novel dielectric-barrier discharge (DBD) plasma decomposition method. The combined characterization of Brunauer-Emmett-Teller measurement, X-ray diffraction, hydrogen temperature-programmed reduction and transmission electron microscopy shows that DBD plasma treatment enhances the support-metal interaction of Ni/MgO catalyst and facilitates the formation of smaller Ni particles. Sphere-like Ni particles form on plasma treated Ni/MgO catalysts. The plasma treated Ni/MgO catalyst shows a significantly improved low temperature activity and good stability for CO reforming of methane to syngas.

关键词: CO2 reforming     methane     dielectric-barrier discharge (DBD)     plasma     Ni/MgO    

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 483-495 doi: 10.1007/s11783-013-0595-z

摘要: A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N adsorption, and hydrogen temperature programmed reduction (H -TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO improved the thermal stability. The Ce ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

关键词: three-way catalyst     flower-like     Ultrasonic Assisted Membrane Reduction (UAMR)     Pt nanoparticles    

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 457-460 doi: 10.1007/s11705-010-0524-7

摘要: The catalytic performance of Co-Mo-Ce-K/γ-Al O catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The results indicate that Ce and K have a synergistic effect on promoting the catalytic activity, and the Co-Mo-Ce-K/γ-Al O catalyst with 3.0 wt-% CeO and 6.0 wt-% K O exhibits the highest activity. CeO favors Co dispersion and mainly produces an electronic effect. TPR characterization results indicate that the addition of CeO -K O in the Co-Mo-Ce-K/γ-Al O catalyst decreases the reduction temperature of active components, and part of octahedrally coordinated Mo transforms into tetrahedrally coordinated Mo , which has a close relationship with the catalytic activity.

关键词: coke oven gas     water gas shift reaction     sulfur-tolerant catalyst     cerium dioxide    

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 777-798 doi: 10.1007/s11705-022-2148-0

摘要: As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

关键词: photoelectrochemical water splitting     photoelectrodes     hydrogen production     charge separation     catalytic mechanism    

Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance

Hao Xu, Chi Lei, Qinming Wu, Qiuyan Zhu, Xiangju Meng, Daniel Dai, Stefan Maurer, Andrei-Nicolae Parvulescu, Ulrich Müller, Fengshou Xiao

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 267-274 doi: 10.1007/s11705-019-1845-9

摘要: SSZ-39 zeolite with AEI framework structure is a good catalyst candidate for the methanol-to-olefins (MTO) reaction. However, the diffusion limitation and coke formation often results in fast deactivation of the SSZ-39 zeolite catalyst. One solution for this challenge is to introduce mesoporosity in the SSZ-39 zeolite. Herein, we report the synthesis of mesoporous SSZ-39 zeolite using an organosilane surfactant, , -dimethyl- -(3-(trimethoxysilyl)propyl)octan-1-aminium chloride, as a mesopore template and , -dimethyl- -2,6-dimethylpiperidinium as a micropore template. The obtained zeolites were characterized by X-ray diffraction, N sorption, scanning electron microscopy, temperature programmed desorption of ammonia, and magic angle spinning nuclear magnetic resonance of Al. The results show that the mesoporous SSZ-39 zeolite has high crystallinity, meso/microporosity, high surface area, cuboid morphology, and abundant acidic sites. More importantly, this mesoporous SSZ-39 zeolite exhibits enhanced catalyst lifetime in the MTO reaction due to the presence of mesoporosity for fast mass transfer, compared with a conventional SSZ-39 zeolite without mesoporosity.

关键词: SSZ-39 zeolite     mesopores     organosilane surfactant     MTO reaction     soft template     mass transfer    

标题 作者 时间 类型 操作

Preparation and catalytic performance of La0.8Sr0.2CoO3 supported on the mullite fiber ceramic

ZENG Lingke, LIU Yanchun, LIU Ping′an, WANG Hui, SHUI Anze, DUAN Bilin

期刊论文

Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane

Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren

期刊论文

Effect of alkyl nitrite decomposition on catalytic performance of CO coupling reaction over supported

Zhenhua LI, Weihan WANG, Dongxue YIN, Jing LV, Xinbin MA

期刊论文

Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for

Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou

期刊论文

A study on the catalytic performance of Pd/γ-Al

Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO

期刊论文

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

期刊论文

Catalytic ozonation performance and surface property of supported Fe

Zhendong YANG, Aihua LV, Yulun NIE, Chun HU

期刊论文

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

期刊论文

The preparation, characterization, and catalytic performance of porous fibrous LaFeO

Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang

期刊论文

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

期刊论文

Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance

Yan LI,Zhehao WEI,Yong WANG

期刊论文

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

期刊论文

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

期刊论文

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven

期刊论文

Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance

Hao Xu, Chi Lei, Qinming Wu, Qiuyan Zhu, Xiangju Meng, Daniel Dai, Stefan Maurer, Andrei-Nicolae Parvulescu, Ulrich Müller, Fengshou Xiao

期刊论文